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1. INTRODUCTION

The following theorem of Carlson [4] (or see, e.g., Boas [1, p. 153]) is
well known. The complex plane is denoted by C.

THEOREM A. Let f be an entire function and let 0 < ex < 7T. If

fez) = O(e~IZI)

uniformly as I z I -+ 00 and

(1)

fez) = 0 (z = 0, 1,2,...),

thenf == O.

Using a similar result, Boas [2] proved the following.

THEOREM B. Let h be a real-valued harmonic function in C and let°< ex < 7T. If
h(z) = O(e~IZI)

uniformly as I z I -+ 00 and

h(z) = 0 (z = 0, ±1, ±2,... , i, i ± 1, i ± 2,...), (2)

then h == 0.

Similarly, Ching [6] showed that the same conclusion holds if, III

Theorem B, we replace (2) by the conditions

h(z) = 0 (z = 0, ±1, ±2,... , ±i, ±2i,...)

and h(z) = -he-z) for all complex z.
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In this note, answering a question of Boas [2], we show how theorems of
this type can be proved for harmonic functions in the Euclidean space Rn
of dimension n ~ 2. I am grateful to the referee for drawing my attention to
the papers of Rao [9] and Zeilberger [10] in which some of the results of the
present paper are proved. The proofs given here are different from those of
Rao and Zeilberger, and our methods can be applied to solve other problems.

Before stating our results, we give some notations. An arbitrary point of
Rn is represented by X = (Xl'"'' xn), and we put

Throughout this note m is an integer such that 1 ~ m ~ n, and we put

Ern = {X ERn; Xm+l = '" = Xn = O}

and

Lrn = {X E Em; Xl"'" Xm EN},

where N = {O, 1, 2, ...}. Thus Un is a copy of Nm embedded in Em, and Em is
a copy of Rm embedded in Rn. If G1 and G2 are subsets of Rn, we put

By analogy with the terminology for entire functions and harmonic functions
in C, we say that a harmonic function h in Rn is of exponential type ex, where
o ~ ex < 00 if

lim sup r-l log .It(h; r) = ex,
r-->ryJ

where

ult(h; r) = sup I h(X)1
IXI~r

(r > 0).

Conventionally, constant functions are of exponential type O.
Our main results are corollaries of the following theorem.

THEOREM 1. Let h be a harmonic function of exponential type less than 1T

in Rn. Ifh = 0 on Lm, then h = 0 on Em.

The result fails (for any m and n) if h is of exponential type 1T.

The case m = 1 of this theorem, from which the other cases are easily
deduced, is Rao's Theorem 1.3 in [9].

We come now to the applications of Theorem 1.
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THEOREM 2. Let h be a harmonic function of exponential type less than 7T

in Rn, and let Zl be a point of Rn whose n-th coordinate is 1. If h = 0 on
Ln-l u (Ln-l + {Zl})' then h == O.

This is similar to Rao's Corollary 1.8 in [9] and Zeilberger's Theorem A
in [10]. The case n = 2 of this theorem is an improvement of Theorem B
quoted above.

THEOREM 3. Let h be a harmonic function of exponential type less than 7T

in Rn. If h = 0 on the union of the n intersecting copies of Nn-l given by

{X E L n; Xi = 0 for at least one i (l ~ i ~ n)}

and

heX) = (_1)n+! h(-X)

then h == O.

This generalizes Ching's result, cited above.

(3)

THEOREM 4. Let h be a harmonic function of exponential type less than 7T

in Rn, and let Zo be a fixed point ofEn-I, Ifh = 0 on Ln-l and 8hj8xn = 0 on
Ln-l + {Zo}, then h = O.

This improves Zeilberger's Theorem B in [10].
In [2] Boas also asked whether a certain theorem of Cartwright on entire

functions had an analogue for harmonic functions in C. Cartwright's theorem
[5] (or see [I, p. 180]) may be stated in the following form.

THEOREM C. Iff is an entire function which satisfies (I) for some ex such
that 0 < ex < 7T and there is a number M such that

then

If(z)] ~ M (z = 0, ± I, ±2,...),

I fez)] ~ A(ex)M

for each z on the real axis, where A depends only on ex and is continuous on
(0, 7T).

By using this result and modifying the proof of Theorem I, we shall be
able to prove an analogous result for harmonic functions in Rn. We put

1m = {X E Em; Xl"'" Xm E Z},

where Z = {O, ±I, ±2,...}.
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TBEOREM 5. Let h be a harmonic function ofexponential type ex < TT in Rn.
If there is a number M such that

I h(X) I :0( M

then

I h(X)I :0( {A(ex)}ill M

The result fails (for any m and n) if h is of exponential type TT.

Applying Picard's theorem that a bounded harmonic function in Rn is
constant, we obtain immediately the following.

COROLLARY. Let h be a harmonic function of exponential type less than TT

in Rn. Ifh is bounded on In then h is constant.

2. DERIVATIVES OF HARMONIC FUNCTIONS

It is well known that if h is harmonic in Rn, then its multiple Taylor series
about any point converges to h in the whole of Rn (see e.g. Brelot [3, p. 179]).
This fact and the following result are central to the proofs of Theorems 1
and 5. We denote the origin of Rn by 0 and write

(j = 1,2,...).

THEOREM 6. If h is harmonic in Rn and

where iX > 0, then

(r -4- 00), (4)

Before proving this result, we give some further notations. For each positive
number r, we put

B(r)={XERn:IXI <r}, S(r) = {XERn: I XI = r}.

The surface area measure on S(r) is denoted by a and the surface area of S(1)
by Sn'

The Poisson kernel of B(r) is the function K: B(r) X S(r) -4- R, defined by
the equation
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and if h is harmonic in Rn, we have

263

heX) = I K(X, Y)h(Y)da(Y)
S(r)

(X E B(r»

(see e.g. Helms [7, p. 16]). Since K and all its partial derivatives (with respect
to its first argument) are continuous on B(r) x S(r), we have

DJh(O) = I DJK(O, Y)h(Y)da(Y)
S(r)

(j = 1,2,...). (5)

In view of (5), we see that the main problem in the proof of Theorem 6
is to estimate DJK(O, Y). To do this, we note that

'"
K(X, Y) = (sn)-l r 1- n 2: N(n, k)(1 X I/r)k Pk.n(g) (X E B(r)\{O}, Y E S(r»

k~O (6)

where N(n, k) is the number of linearly independent homogeneous harmonic
polynomials of degree k in Rn, gis the cosine of the angle between X and Y
(i.e.,

and Pk •n is the generalized Legendre polynomial of degree k (see Muller [8],
especially Lemma 17, from which (6) can be derived.) Let

I(r) = {X E £1 n B(r); Xl > O} (r > 0).

Observe that if Y is a fixed point of S(r), then g remains constant as X
varies on I(r). Hence, assuming for the moment that repeated term-by-term
differentiation of the series in (6) is valid, we have

'"DJK(X, Y) = (sn)-l r 1- n I N(n, k)k! [(k - j)!]-l I X iH r-kPk.nW
k~j

(j = 1,2,... , X E l(r), Y E S(r». (7)

Now since

and

I Pk,n(t)[ ~ 1 (-1 ~ t ~ 1)

N(n, k) = O(kn - 2) (k --->- 00)

[8, p. 15]

[8, p. 3]

(8)

(9)

the series in (7) is uniformly convergent in I(P) X S(r) for each p such that
o < p < r, and hence the term-by-term differentiation is justified. Taking the
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limit in (7) as X tends to 0 along I(r) and using the continuity of DjK, we
obtain in view of (8) and (9)

I DiK(O, Y)] ~ (sn)-l r1-n-jN(n,j)j! (j = 1,2,... , Y E S(r»
(10)

where A depends only on n.
Returning to (5), we now find, using (10) and the hypothesis (4), that

(11)

where C is the constant implied by the O-notation in (4). In particular, taking
r = j/a in (11), we have

I Dih(O) I = O(j!jn-2-i(ae)i)

= O(jn-3/2aj),

by Stirling's formula.

(j~ (0)

3. PROOF OF THEOREM I

Theorem A enters the proof of Theorem 1 via the following result.

LEMMA 1. Let (aj) be a real sequence such that

aj = O(fJi fj!)

where 0 < fJ < 7T, and let

CQ

get) = L: ajt
j

j~O

(j~ (0),

(t E R).

(12)

(13)

Ifg(t) = Ofor all non-negative integers t, then g ==0 O.

To prove the lemma, define f in C by putting

CQ

fez) = L: ajzi,
j~O

so thatf(z) = g(z), when z is real. From (12) it follows that

fez) = O(eS[zl)
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uniformly as I z i -+ 00, so that, since fez) = g(z) = °when z is a non
negative integer, we have, by Theorem A, f == °and hence g == 0.

Next we note the following simple consequence of the maximum principle.

LEMMA 2. If h is a harmonic function of exponential type ex in Rn, then the
value of ex is unaffected by a translation of the axes.

The proof of the first paragraph of the theorem is by induction on m, and
we deal first with the case m = 1. Since h is given in Rn by its multiple Taylor
series about 0 we have in partcular.

CD

h(xl ,0, ... ,0) = L Djh(O)(j!)-l x/
j~O

(Xl E R). (14)

Since h is of exponential type less than 17, there is a number ex with°< ex < 17

such that

By Theorem 6,

M(h; r) = O(e''')

Djh(O) = o(/3j)

(r-+ (0).

(j -+ (0), (15)

where f3 is any number such that ex < f3 < 17. Applying Lemma I with
aj = Dih(O)fj!, we see that h = 0 on El.

Now suppose that I :::;; m < n, that the theorem is true for m and that h
satisfies the hypotheses of the theorem for m + 1. Using the theorem for m,
we find that h = 0 on Em. Similarly, using Lemma 2, we obtain by translating
the origin along the xm+1-axis that h = °on each of the sets

{X E Em+l: Xm+1 = k} (k = 0, 1,2,...)

and hence on their union pm, say. Hence if J is a doubly infinite line in Em+!
parallel to the xm+1-axis, heX) = °whenever X E J and X m +1 E N. By trans
lating the axes so that J coincides with the xm+1-axis, we obtain by a trivial
generalization of the case m = I (interchange the roles of Xl and Xm+l) of
the theorem that h = 0 on J. Since this holds for each such J, h = 0 on Em+1,
and the induction is complete.

The second paragraph of the theorem may be proved by considering the
function u, defined in Rn by

u(X) = sin 7TXl cosh 7TXn • (16)

It is clear that u is a harmonic function of exponential type 17 in Rn and that
u(X) = 0 if and only if Xl E Z. Hence h = 0 on Lm for each m, but h does not
vanish identically on any Em.
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4. PROOFS OF THEOREMS 2, 3 AND 4

If h satisfies the hypotheses of Theorem 2, then by the case m = n - 1 of
Theorem 1, h = 0 on En-I. Bya translation argument of the type used in the
proof of Theorem I, we also have h = 0 on the set {X ERn: Xn = I}.
Repeated use of the reflection principle and the uniqueness of harmonic
continuations gives h = 0 on Fn-I = {X ERn; X n EN}. In particular, h = 0
on Ln, so that by the case m = n of Theorem I, h = O.

If h satisfies the hypotheses of Theorem 3, then by a trivial generalization
of the case m = n - I of Theorem I, h = 0 on each of the hyperplanes

(k = 1, ... , n).

By n applications of the reflection principle and the uniqueness of harmonic
continuations, we find that

which together with the hypothesis (3) implies that h - O.
To prove Theorem 4, we need the following simple result.

LEMMA 3. If h is a harmonic function of exponential type ex in Rn, then
8h/8xn is ofexponential type at most LX.

To prove the lemma suppose that r > 0 and that Y E S(r). Then

I:h (Y) I~ c sup I h(X)[ ~ c.A(h; r + 1),
X n IX-YI~l

where c depends only on n. For the first inequality see e.g. [3, p. 198]; the
second follows from the maximum principle. These inequalities imply that

.A(8hj8xn ; r) ~ c.A(h; r + 1),

whence the lemma follows.
Suppose now that h satisfies the hypotheses of Theorem 4. By the case

m = n - 1 of Theorem 1, h = 0 on En-I. Similarly, by Lemmas 2 and 3
and the case m = n - 1 of Theorem 1, 8hj8xn = 0 on En-I. A simple
argument involving the reflection principle shows that all the partial deriva
tives of h are zero on E"-1 and hence that h = O.

5. PROOF OF THEOREM 5

We argue as in the proof of Theorem 1, using in place of Lemma 1 the
following consequence of Theorem C.
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LEMMA 4. Let (aj) be a real sequence satisfying (12) for some f3 such that
o < f3 < Tr, and let g be given by (13). If there is a number M such that
Ig(t)1 :'( M whenever t is an integer, then Ig(t)1 :'( A.(f3)M for all real t.

This follows from Theorem C in the same way that Lemma 1 follows from
TheoremA.

Suppose that h satisfies the hypotheses of Theorem 5 in the case m = 1.
If f3 is a number such that ex < f3 < Tr, then

.4i(h; r) = o(ela -:-$)r/2) (r -+ 00),

and hence, by Theorem 6, (15) holds. Using (15), (16) and Lemma 4, we find
that Ih I :'( A.(f3)M on El. Letting f3 -+ ex+ and using the continuity of A.,
we have I h I :'( A.(ex)M on £1.

Next suppose that 1 :'( m < n, that the theorem is true for m and that h
satisfies the hypotheses of the theorem for m + 1. Using the theorem for m
and proceeding as in the proof of Theorem 1, we find that I h [ :'( {A.(ex)}m M
on the set {X E Em+!: X m+1 E Z}. In particular, if J is a doubly infinite line
parallel to the xm+!-axis, then I h(X)1 :'( {A.(ex)}m M whenever X E J and
x m+1 E Z. Hence, by a trivial generalization of the case m = 1 ofthe theorem,
we have Ih(X)1 :'( {A.(ex)}m+l M whenever X E J. Since this inequality holds
on all such lines J, it holds on Em+!. By induction, the proof of the first
paragraph of Theorem 5 is complete.

Consideration of the function u, defined in Rn by (16) proves the second
paragraph of the theorem in the case m = n. For the other cases, consider the
function v, defined in Rn by

It is easy to show that v is a harmonic function in Rn of exponential type Tr.

Further, v = 0 on the set {X ERn: Xl E Z, X n = O} which contains Lm
(m = 1,2,... , n - 1). However, v is unbounded on £1 and hence on every Em.

REFERENCES

1. R. P. BOAS, JR., "Entire Functions," Academic Press, New York, 1956.
2. R. P. BOAS, JR., A uniqueness theorem for harmonic functions, J. Approximation

Theory 5 (1972), 425-427.
3. M. BRELOT, "Elements de la theorie c1assique du potentiel," 3eme edition, Centre de

Documentation Universitaire, Paris, 1965.
4. F. CARLSON, "Sur une c1asse de series de Taylor," thesis, Upsala, 1914.
5. M. L. CARTWRIGHT, On certain integral functions of order 1 and mean type, Proc.

Cambridge Phi/os. Soc. 34 (1935), 347-350.
6. C-H. CHING, An interpolation formula for harmonic functions, J. Approximation

Theory 15 (1975), 50-53.



268 D. H. ARMITAGE

7. L. L. HELMS, "Introduction to Potential Theory," Wiley-Interscience, New York, 1969.
8. C. MULLER, "Spherical Harmonics," Springer-Verlag, Berlin/Heidelberg/New York,

1966.
9. N. V. RAo, Carlson theorem for harmonic functions in Rn, J. Approximation Theory

12 (1974), 309-314.
10. D. ZEILBERGER, Uniqueness theorems for harmonic functions of exponential growth,

Proc. Amer. Math. Soc. 61 (1976), 335-340.


